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SUBSTITUTION THERAPIES ON DEVELOPMENTAL MYELINATION 
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While most cells of the central nervous system (CNS) express opioid 

receptors, the role of the endogenous opioid system in CNS development 

remains poorly understood.  

Identification of opioid functions during brain maturation is particularly 

crucial in light of the increasing trend in opioid abuse and the use of opioid drugs 

during pregnancy. New substitution therapies in pregnant opioid addicts include 

buprenorphine, a mu opioid receptor partial agonist and kappa opioid receptor 

antagonist.  However, while clinical studies demonstrated buprenorphine efficacy 
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in reducing neonatal withdrawal symptoms, there is a lack of information on the 

potential effects of this drug on brain development.   

Previous work from our laboratory has shown that perinatal exposure to 

buprenorphine induces dose-dependent alterations in rat brain myelination. 

These time-specific effects suggested that both therapeutic and supra-

therapeutic doses of the drug could alter the normal pattern of oligodendrocyte 

development. In support of this hypothesis, this thesis work has now found that 

buprenorphine exerts direct actions on the oligodendrocytes that are highly 

dependent on both the drug dose and stage of cell differentiation.  When 

exposed to buprenorphine, oligodendrocyte progenitors isolated from 3-day-old 

rat brain exhibit increased cell proliferation. In contrast, treatment of more mature 

oligodendrocytes obtained from 9-day-old rat brain induces dramatic dose-

specific effects on cell process network extension and membrane outgrowth. 

These later effects are accompanied by significant parallel changes in the 

expression of the four major splicing isoforms of myelin basic protein (MBP), a 

critical component of the myelin membrane and mature myelinating 

oligodendrocytes.  Furthermore, similar dose-specific effects on MBP expression 

are also elicited by methadone, a mu opioid receptor agonist already approved 

for the treatment of pregnant opioid addicts. Experiments with CTOP, a highly 

selective antagonist of the mu opioid receptor, further contribute to the idea that 

this receptor subtype plays an important function in controlling oligodendrocyte 

maturation. 
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These findings underscore the potential effects of opioid exposure during 

brain maturation and further indicate an important regulatory role of the 

endogenous opioid system in the control of oligodendrocyte development and 

myelination. 
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INTRODUCTION 

Epidemiological data show an increasing incidence of opioid abuse 

(Compton and Volkow, 2006), a critical problem among pregnant addicts. 

Surprisingly, little is known about the effects of these drugs on child 

development, although several clinical studies suggest that their use during 

pregnancy may interfere with the formation of the central nervous system (CNS). 

Infants exposed to opioids in utero exhibit reduced head circumference, 

decreased attention, altered fine motor coordination, and a greater risk of sudden 

infant death syndrome (Rosen and Johnson, 1982, Marcus et al., 1984, Kandall 

et al., 1993). In addition, longitudinal studies found that these children showed 

heightened activity, impulsivity, and reduced attention span, suggesting 

underlying neurological problems (Hutchings, 1982). However, the effects of 

perinatal exposure to opioids on brain development are difficult to assess 

because behavioral and cognitive outcomes in children are known to be highly 

influenced by environmental, educational, and lifestyle factors (Ornoy et al., 

2001).  

The current FDA approved standard treatment for opioid addiction during 

pregnancy is substitution therapy with methadone, even though this mu opioid 

receptor agonist has been linked to neonatal abstinence syndrome upon 

discontinuation (Fischer et al., 2006, Lejeune et al., 2006). One alternative 

possibility is the use of buprenorphine. This mu partial agonist and kappa 

antagonist has been approved to treat opioid-dependent adults in the United 
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States and is also being used experimentally in pregnant addicts in this and 

several other countries. Clinical trials indicate that buprenorphine is effective in 

the prevention of “street opioid” abuse by pregnant addicts as well as reducing 

the incidence and severity of neonatal abstinence syndrome (Jones et al., 2005, 

Ebner and Wiedmann, 2006). However, as indicated above, not much is known 

about the potential effects of these treatments on the developing CNS. 

The brain is most vulnerable to insults during development when critical 

periods of network establishment and refinement are underway. Recent studies 

suggest that a major factor in the coordination of these events is the endogenous 

opioid system. Both neurons and glia express opioid receptors and endogenous 

opioid peptides in a developmentally controlled manner (Wu et al., 1997, Ikeda et 

al., 1998, Knapp et al., 1998, Leslie et al., 1998, Miller and Azmitia, 1999, Kivell 

et al., 2004). In this regard, perinatal exposure of rats to buprenorphine has been 

shown to delay the generation of cholinergic neurons (Robinson, 2002) and to 

reduce the expression of nerve growth factor in the striatum (Wu et al., 2001), 

underscoring the importance of further research on the actions of this drug in 

CNS development. 

 Interestingly, previous work from our laboratory has shown that 

buprenorphine affects the formation of myelin (Sanchez et al., 2008), the 

multilamellar membrane that insulates axons allowing the rapid saltatory 

conduction of nerve impulses. In the CNS, the myelin membrane is produced by 

oligodendrocytes, a type of glial cell, which is the center of these studies and will 

be described in detail in the following sections of this thesis. The synthesis of 
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myelin is under control of multiple growth factors and hormonal signals as well as 

cell-cell interactions, making this a particularly vulnerable process during CNS 

development. The observed effects of buprenorphine on myelination beg further 

investigation, as the roles of opioid receptors in oligodendrocyte development 

and in vivo myelination are unknown.  

This work investigates the direct effects of opioids on developing 

oligodendrocytes in vitro. Characterizing these specific effects will help to further 

understand the in vivo role of the endogenous opioid system in controlling 

myelination as well as provide important clues for the development of therapeutic 

interventions for pregnant opioid addicts.  

First, a background of opioids and glia will be given before we investigate 

their coordinated effects on oligodendrocyte development and function. 

   

OPIOIDS   

Opioids comprise a family of drugs that has long been used to relieve 

various types of pain. Opiates were originally defined as derivatives of the opium 

poppy (papaver somniferum).  However, the modern term “opioids” 

encompasses opiates as well as synthetic and endogenous molecules, all of 

which are able to interact with opioid receptors. Today, these compounds are 

widely used for their analgesic properties as well as their inhibitory effects on the 

digestive system.  
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Opioids have been used medicinally for thousands of years. The use of 

opium for pain management and dysentery treatment existed in antiquity, but did 

not become widespread until the mid-19th century.  The global opium trade 

originated in the Middle East and was facilitated by the imperial campaigns of the 

British Empire. Soon, opium use spread to the Far East as well as Western 

Europe. Opioids had previously been available in the United States, but at the 

turn of the century their use expanded dramatically. Heroin was widely used to 

relieve cough, as well as a range of maladies from digestive problems to 

menstrual pain. However, these substances are characterized by their high 

potential for abuse, resulting in serious clinical manifestations and making users 

vulnerable to severe withdrawal upon cessation. As they became readily 

available, the incidence of opiate abuse rose. By 1914, the US government 

acknowledged the growing problem and brought opioids under federal regulation 

by passing the Harrison Act (Acker, 2002). Presently, opioids are clinically 

available by prescription only. Yet opioid abuse remains a problem worldwide.  

 

Physiological Effects of Opioids 

Opioids are the most effective drugs known for pain relief. At therapeutic 

doses, they successfully suppress pain with a minimal effect on other sensations. 

Opioid analgesia is specific to ‘second pain’: the dull ache after noxious stimulus, 

or ‘first pain’ (Cooper et al., 1986). This may explain the evolutionary significance 

of the endogenous opioid system—dulling second pain does not hinder 
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perception of future noxious stimuli. Opioids have also been shown to reduce 

emotional pain, which is a major factor in their high potential for addiction.  

These drugs cause marked physiological changes when consumed at 

analgesic doses. Decreased body temperature and pituitary function, respiratory 

depression, pupil constriction, suppressed cough reflex, nausea, decreased 

gastrointestinal secretions and motility, and suppression of the immune system 

are all observed. In neurons, opioids presynaptically inhibit the release of small 

nociceptors via the inhibition of calcium channels (Taddese et al., 1995). 

 

Opioid Subtypes  

Naturally Occurring Opiates 

 The naturally occurring opiates are alkaloids derived from the papaver 

somniferum plant. Morphine is the predominant type, but codeine and thebaine 

can also be derived from the plant (Martin, 1967). 

Synthetic Opioids 

 Synthetic opioids are the largest subtype and constitute the majority of 

molecules within this group that are used for pharmaceutical purposes (Portenoy, 

1993). These substances have molecular structures analogous to those of 

naturally occurring opioid alkaloids. Examples include diacetylmorphine (heroin), 

hydrocodeine, oxycodone, fentanyl, methadone, and buprenorphine. Along with 

morphine, many synthetic derivatives are used clinically for pain management. 
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Buprenorphine and methadone, notably, are used to treat opioid addiction by 

mitigating withdrawal symptoms through replacement therapy (Figure 1).  These 

two drugs will be described in more detail in following sections of this thesis as 

their administration to pregnant opioid addicts has the potential of affecting 

crucial steps along brain development. 
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Figure 1. The molecular structures of buprenorphine and methadone. These 

synthetic opioids are commonly used in replacement therapy. 
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Endogenous Opioids 

Interestingly, the human body produces endogenous opioid peptides that 

were discovered as a result of initial studies investigating exogenous opioid 

actions and the role of different opioid receptors.  Many of the original studies 

used high-affinity alkaloids to identify opioid receptor types. Morphine was used 

to identify the mu receptor, ketocyclazocine for the kappa receptor (Lord et al., 

1977). However, a stimulation-induced analgesia was observed in animals that 

could be reversed with the administration of naloxone, a known opioid receptor 

antagonist (Mayer et al., 1971). The first two peptide candidates for mediating 

this response were methionine- and leucine-enkephalin, endogenous peptides 

consisting of five amino acid residues (Waterfield et al., 1976). Shortly thereafter, 

β-endorphin and dynorphin were isolated. The enkephalins, endorphins, and 

dynorphins make up the three distinct groups of endogenous opioid peptides.  

The constituents of these three groups differentially bind the mu, delta, and 

kappa opioid receptors with varying affinity. The ORL-1 receptor only binds the 

endogenous peptides nociceptin and orphanin FQ (Meunier et al., 1995, 

Reinscheid et al., 1995).  

 

Opioid Receptors 

All opioids bind to at least one type of opioid receptor. This family of 

receptors is comprised of the mu opioid receptor, the kappa opioid receptor, the 

delta opioid receptor, and the opioid receptor-like 1 receptor (ORL-1). This 
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nomenclature was derived from radiolabeled ligand affinity studies. For example: 

the mu receptor was defined and characterized by its high affinity for morphine. 

These studies revealed stereospecific, saturatable binding kinetics (Pert et al., 

1973), along with the differential distribution of mu, delta, and kappa in the brain 

with a high concentration present in areas relevant to pain, including the 

periaqueductal grey, medial thalamus, and amygdala (Hiller et al., 1973, Kuhar et 

al., 1973, Pert et al., 1976).  ORL-1 was discovered decades later through 

sequence homology studies. Like the other receptors, it was cloned and shown 

to match the endogenous receptor. Originally, it was named the N/OFQ receptor 

for its endogenous ligands: nociceptin and oprhanin FQ (Butour et al., 1997). It 

differs from mu, delta, and kappa receptors by its negligible response to 

naloxone—a potent antagonist to the three other receptors. In addition, ORL-1 

does not bind any of the other endogenous opioid peptides. 

The mu, delta, and kappa opioid receptors exhibit both high structural and 

functional homology. These molecules are G-protein coupled receptors (GPCR) 

with seven transmembrane domains spanning the phospholipid bilayer. The 

receptor is coupled to a heterotrimeric G-protein that acts as the transducer 

between receptor and the eventual effector response. These G-proteins are 

composed of three subunits whose activity is regulated by allosteric interaction 

with guanosine triphosphate (GTP) and guanosine diphosphate (GDP). When 

bound by an agonist, opioid receptors inhibit adenylyl cyclase activity through 

activation of the Gi/G0 G-protein. These G-proteins can also affect phospholipase 

C, mitogen-activated protein kinase (MAPK), and ion channel activity. Gi/G0 
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appears to be the G-protein most prominently involved in these primary 

transduction mechanisms, but opioid receptors have also been linked to other G-

proteins that mediate secondary transduction mechanisms (e.g. Gq, G11, G12, 

G13, and G16) (Lee et al., 1998, Ho et al., 2002). These primary and secondary 

effects alter levels of second messengers like cyclic adenosine monophosphate 

(cAMP), diacylglycerol (DAG), and inositol triphosphate (IP3), signaling molecules 

which can regulate the expression and activation of various kinases and 

transcription factors and eventually cause changes in gene regulation. The mu, 

delta, and kappa receptors all have constitutive levels of activity, so responses to 

ligand binding are modulatory as opposed to binary.  

GPCRs are subject to desensitization and endocytosis with chronic opioid 

use. β-arrestin is recruited to the receptor after it is phosphorylated by G protein 

receptor kinase and decouples the receptor from the G protein. Unlike other 

models of chronic receptor activation, opioid receptor levels do not decrease 

dramatically over time. One hypothesis is that the GPCR becomes dissociated 

from its downstream effectors and therefore is less effective in inhibiting adenylyl 

cyclase (Christie et al., 1987).  

 

GLIAL CELLS 

The neuronal doctrine has dictated the study of brain function and brought 

about our current understanding of the nervous system. This dogma proffers that 

neurons and the synapses adjoining their networks are the primary units of the 
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nervous system structure and function. In recent years, however, this view has 

been borne out as incomplete. Glial cells were characterized by Virchow as 

“nervenkitt” (nerve glue) upon their discovery, but they are increasingly 

implicated in signaling, development, plasticity, and other functional aspects of 

the brain. Recent evidence suggests that glial networks act in concert with 

neurons to refine and control the nervous system.  

 

Glia Characteristics  

 Glia consist of five cell types: astroglia, microglia, oligodendrocytes, 

ependymal cells of the CNS, and the Schwann cells of the peripheral nervous 

system (PNS). Each of these cell groups possesses an array of functions which 

are integral to nervous system physiology. Along with neurons, glial types 

constitute the main categories of cells in the CNS. Neurons differ from glia in 

their ability to conduct action potentials. However, the inability of glia to 

propagate these all-or-none electrical signals does not designate them as static 

entities; rather, they refine circuits by limiting and directing electrical propagation.  

 Surprisingly, glia are the predominant cell type while neurons account for 

only 20%-40% of all cells in the CNS. The macroglia, of ectodermal origin, are 

comprised of astrocytes (60-80%), ependymal cells (5%), and oligodendrocytes 

(5%-10%). Microglia originate from the mesoderm and under normal non-

inflammatory conditions they make up 10% of the CNS glia.  
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Glial morphology and distribution was thoroughly described in the 19th 

century by histologists Camillo Golgi, Santiago Ramón y Cajal, and Pio Del Rio 

Hortega. Yet, investigation of their functional importance was not conducted until 

recent decades. Glial coupling and networks were first observed in the 1960’s 

(Kuffler and Nicholls, 1966, Brightman and Reese, 1969). However, technological 

improvements were necessary for advancing the study of glial function, and, in 

1984, receptors for the neurotransmitters glutamate and gamma-aminobutyric 

acid (GABA) were discovered in astrocytes and oligodendrocytes (Bowman and 

Kimelberg, 1984, Kettenmann et al., 1984a, Kettenmann et al., 1984b). In recent 

years, glia have shed their label as the mortar of the CNS and proven to play a 

variety of functional roles. Astrocytes are known to express multiple receptors 

and enzymatic systems whose main functions are to maintain nervous system 

homeostasis and to limit neurotransmitter availability. These cells are also 

implicated in the induction and formation of the blood brain barrier and 

developmental synaptogenesis (Barker and Ullian, 2010, Giaume et al., 2010, 

Christopherson et al., 2005). 

On the other hand, oligodendrocytes are responsible for making the 

myelin membrane in the CNS.   Schwann cells represent their counterparts in the 

PNS. Oligodendrocytes are the center of these studies and therefore, they will be 

described in greater detail in the following sections. 

Importantly, The ability of both astrocytes and oligodendrocytes to 

respond to neurotransmitters (Karadottir et al., 2005); together with the newly 

established presence of glial networks (Verkhratsky et al., 2009), has profoundly 
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implicated glia in current neurobiological studies, challenging many preconceived 

ideas on the organization and functioning of the CNS.  

 

The Myelin Membrane 

Myelin Structure 

 Myelin is a specialized multilamellar structure that ensheaths axons in the 

vertebrate nervous system. It is a three-dimensional structure formed by the 

extension and concentric wrapping of the oligodendroglial membrane, remaining 

continuous with the oligodendrocyte. A single oligodendrocyte can myelinate 10-

30 axons simultaneously and multiple oligodendrocytes are responsible for 

generating the different myelin internodes along a single axon, resulting in a 

highly intricate glial-neuronal network (Baumann and Pham-Dinh, 2001).  

A periodicity to myelin exists; it is generated along the axons as 150-200 

nanometer-long longitudinal segments called internodes (Butt and Ransom, 

1989). These internodes are flanked by the nodes of Ranvier: axonal areas 

lacking myelin but with an increased density of ion channels. As discussed later, 

this periodic distribution of ion channels is determined by the presence of 

internodes, and together with the insulating properties of myelin, is the basis for 

the rapid saltatory conduction of electrical signals—the impulse jumps from node 

to node.   
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 Cross sections of myelinated axons visualized by electron microscopy 

(Figure 2) show that myelin appears as a sequence of dark and less dark lines 

separated by lighter zones. The dark line—known as the major period line—is 

formed by the fusion of inner cytosolic surfaces of the oligodendrocyte 

membrane. On the other hand, the lighter line is the intraperiod or minor dense 

line, formed by the compaction of the membrane’s outer leaflets. Uncompacted 

areas in the myelin internode are believed to be essential for cellular transport 

and myelin maintenance. Because myelin is a dynamic structure its components 

must constantly be replaced to account for normal membrane turnover. These 

areas of cytoplasm are known as paranodal loops and contain mitochondria, free 

polysomes, and smooth endoplasmic reticulum for protein and lipid synthesis. 

Paranodal loops tend to be located near nodal regions and form transverse 

bands with the periaxonal membrane, which strengthen the connection between 

the axon and paranode (Ichimura and Ellisman, 1991). This is markedly different 

from myelin in the internodal region, which is separated from the periaxonal 

space by an extracellular gap.  

 

The Role of Myelin in Nerve Transmission and Axonal Integrity 

 In unmyelinated nerve fibers, conduction velocity is mainly dependent on 

axonal caliber. In contrast, myelinated fibers allow for rapid conduction velocity 

and transmission fidelity without a corresponding increase in axonal caliber. This 

is achieved by a fundamental difference in conduction mechanism between both 
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types of fibers. In unmyelinated fibers, a uniform distribution of ion channels 

throughout the axolemma results in local circuits propagating depolarization in a 

continuous manner along the axon. By contrast, myelinated axons only expose 

the axonal membrane to the extracellular space at nodal regions. Depolarization 

cannot move continuously along the axon due to the high membrane resistance 

and absence of ion channels in myelinated internodes. Therefore, depolarization 

can only occur at nodes where ion channels are exposed. The impulse jumps 

from node to node. This is known as ‘saltatory’ conduction (Figure 3).  

 Furthermore, several lines of evidence indicate that myelin is also a key 

factor in axonal development. It has been shown that myelination can regulate 

axonal caliber in the optic nerve as well as neurofilament spacing and 

phosphorylation, both of which control axonal radial growth (Hsieh et al., 1994, 

Sanchez et al., 1996). Moreover, several lines of evidence have shown that 

myelination also exerts control over the distribution of the voltage-gated ion 

channels responsible for impulse conduction. Different studies have shown that 

the myelin membrane functions as a barrier that limits the lateral movement of 

ion channels in the axolemma, restricting the localization of voltage-gated sodium 

channels to the nodes of Ranvier while fast voltage-gated potassium channels 

are concentrated in the juxtaparanode (Rasband and Trimmer, 2001, Poliak and 

Peles, 2003, Rosenbluth, 2009). 

 In mature vertebrates, myelin also functions as an inhibitor of neurite 

outgrowth (Domeniconi et al., 2002). By dampening plasticity, myelin may act to 

refine late-developing tracts and preserve established myelinated regions. 
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Moreover, evidence from demyelinating diseases like multiple sclerosis suggest 

that both oligodendrocyte and myelin play an important role in axonal protection 

and survival (Nave and Trapp, 2008). 



www.manaraa.com

	
  

 18	
  

 

 

 

 

 

Figure 2. The myelin sheath forms axonal domains which are essential for 

impulse conduction. (A) An electron micrograph from a longitudinal section 

from rat spinal dorsal root nerve showing the node of Ranvier flanked by 

internodal segments insulated by layers of compact myelin. Each layer of myelin 

terminates in a series of loops adjacent to the node of Ranvier (the paranodal 

loops) (B) Three axonal domains are defined by axon interactions with 

myelinating glia: the Na+ channel-enriched node of Ranvier, the adjacent 

paranode where the loops of myelin adhere to the axon through cell-adhesion 

molecules linked to the axonal cytoskeleton, the juxtaparanode which contains K+ 

channels and the internode sealed by compacted layers of myelin membrane to 

restrict transmembrane ion currents to the nodal region. Modified from Fields, 

RD, Trends Neuroscience, 2008
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Figure 3. Comparison between conduction in a myelinated axon versus an 

unmyelinated axon. Arrows show the flow of action potential in local circuits into 

the active region of the membrane. (A) In unmyelinated fibers, the current flows 

throughout the length of the axon in contrast to (B) myelinated fibers where the 

current jumps between adjacent nodes resulting in saltatory conduction. Modified 

from Basic Neurochemistry, edited by Siegel, Albers, Brady and Price, Elsevier, 

2006.
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Myelin Composition 

Myelin is composed of approximately 70% lipid and about 30 % protein, 

resulting in a highly hydrophobic membrane. This elevated degree of 

hydrophobicity and the compact multilamellar structure of myelin are responsible 

for its high insulating capacity.  

Although no single lipid is unique to myelin or oligodendrocytes, the 

proportions of the various lipids are exclusive characteristics. When compared 

with other membranes and cells, both myelin and oligodendrocytes are highly 

enriched with glycosphingolipids (e.g. galactosylceramides) and their sulfated 

derivates: sulfatides (e.g. sulfogalactosylceramides) which, combined, make up 

20 percent of the lipids in myelin (Morell et al., 1973).  

 In contrast to the lipids, there are characteristic proteins unique to myelin 

and oligodendrocytes. Myelin basic protein (MBP) and proteolipid protein (PLP) 

represent about 80 percent of the total proteins present in myelin (Morell et al., 

1973).  

MBP exists in 3-4 major isoforms, depending on species, ranging in 

molecular weight from 14 to 21.5 kDa. Altogether, MBPs constitute about 30 

percent of the myelin proteins (Boggs, 2006). The various MBPs are generated 

by alternative splicing of a single gene, allowing for precise biological control of 

protein isoform expression along development (de Ferra et al., 1985, 

Campagnoni, 1988). As further discussed in following chapters of this thesis, the 

differential localization of MBP isoforms in oligodendrocytes and myelin suggest 
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that some of these proteins may play a role in cell differentiation while others are 

mainly structural components of the myelin membrane (Pedraza et al., 1997). In 

this regard, studies in MBP-deficient mice have evidenced that MBP is an 

essential factor in myelin compaction (Readhead et al., 1987).  

The other major myelin protein, PLP, exists in two isoforms (25 & 20 kDa), 

also originating from alternative splicing of a single gene (Nave et al., 1987). PLP 

may be acylated on cysteine residues, making it a hydrophobic proteolipid 

complex. Other myelin and oligodendroglial proteins include the enzyme 2',3'-

cyclic nucleotide 3'-phosphodiesterase (CNPase) (Wolfgram, 1966), myelin-

associated glycoprotein (MAG), and myelin oligodendrocyte glycoprotein (MOG). 

Antibodies raised against all of these proteins are frequently used as tools to 

study myelin formation and oligodendrocyte development.  

Myelination: A Complex Developmental Process 

 The process of myelination in the developing brain is observed as a well-

regulated event, conserved temporally and anatomically, yet the precise signals 

and regulatory mechanisms are still poorly understood. Oligodendrocyte 

migration and membrane synthesis must be tightly controlled to achieve proper 

myelination in the CNS. Given that oligodendrocytes only myelinate axons, it is 

evident that specific mechanisms of communication between neurons and 

oligodendrocytes must exist. It has been observed that electrical activity along 

the axon is essential for proper myelination, but specific molecular interactions 

between the axon and oligodendrocyte remain unclear (Tauber et al., 1980). The 
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expression of NMDA receptors in oligodendrocytes suggests that Ca2+ signaling 

in these glial cells is activated by axonal signals. Further support for signaling 

from neurons to myelinating glia is supported by previous findings from this 

laboratory indicating that oligodendrocytes respond to different neurotransmitters 

activating CREB (Sato-Bigbee et al., 1999), a transcription factor that controls 

proliferation, survival, and myelin protein expression in these cells (Afshari et al., 

2001, Saini et al., 2004, Saini et al., 2005).  In addition, the spatial coordination 

between neurons and myelinating oligodendrocytes may be subjected to control 

by astrocytes (Meyer-Franke et al., 1999).  

Oligodendrocyte Development 

 As described previously, the formation of myelin during CNS development 

requires the integration of multiple signals and cells. In order to decipher the 

complex concert of events that result in proper myelination, it is critical to 

understand the development of oligodendrocytes. Mitotically active cells in the 

brain that are immunopositive for a chondroitin sulfate proteoglycan—NG2—are 

the progenitor cell population which gives rise to oligodendrocytes (Nishiyama et 

al., 1996). Different studies have indicated that the NG2+ population may be 

multipotent with the ability to generate neurons and astrocytes, but 90 percent of 

its progeny is oligodendrocytes.  

 An oligodendrocyte progenitor cell will arise from an NG2+ cell in 

ventricular zones of the brain and spinal cord (Luskin et al., 1988, Price and 

Thurlow, 1988). These oligodendrocyte progenitors are migratory and mitotically 
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active. They are characterized by the expression of certain transcription factors, 

including Olig1, Olig2, SOX10, and Nkx2.2 (Baumann and Pham-Dinh, 2001). 

Morphologically, oligodendrocyte progenitors appear as cells with a simple soma 

with one or two emerging polar processes.  

 Once the oligodendrocyte progenitor has migrated to the proper site, local 

growth factors drive its continuing maturation. Thyroid hormone (T3) is a terminal 

differentiation signal to the oligodendrocyte progenitor, halting its mitotic activity 

and effectively inducing its conversion to a pre-oligodendrocyte (Almazan et al., 

1985, Barres et al., 1994). These pre-oligodendrocytes can be identified by their 

expression of sulfatides, recognized by the O4 antibody (Bansal et al., 1989). 

The onset of CNPase expression is another hallmark of a developing 

oligodendrocyte. As they mature, pre-oligodendrocytes begin to form more 

complex networks of cells processes. Finally, the expression of MBP, PLP, MAG, 

and other characteristic myelin proteins will be observed when the cells develop 

into fully differentiated oligodendrocytes (Figure 4). This developmental 

sequence can be replicated in vitro, but proper myelin formation requires the 

presence of neurons and axon-glial interaction.  

 Such a dynamic process is under tight, yet fragile biological control. Many 

pathologies involving demyelination or dysmyelination represent an aberration in 

oligodendrocyte development. A greater understanding of the precise 

developmental controls will certainly reveal therapeutic targets for these 

diseases.  
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Figure 4. Stages in the development of oligodendrocytes. Each stage of 

oligodendrocyte differentiation is characterized by the expression of specific 

markers. Early progenitors are bipolar cells that can be labeled with the A2B5 

antibody and express the PDGF-α receptor and the NG2 chondroitin sulfate 

proteoglycan. The next stage is represented by committed oligodendrocytes, 

multipolar cells that react with O4 antibody. The expression of the myelin 

proteins, including MBP and PLP, marks the final stage of differentiation.
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Oligodendrocyte development must remain under precise biological 

control to ensure temporal and spatial fidelity. As indicated before, myelin has 

been shown to control both axonal radial growth and extension as well as to 

refine neuronal networks. Thus, understanding the factors controlling 

oligodendrocyte maturation and function could reveal therapeutic targets across 

the broad functionality of these cells.  

 The discovery of opioid receptors in oligodendrocytes raised questions 

about the potential effects of the endogenous opioid peptides on oligodendrocyte 

development. Work by Knapp et al. showed that oligodendrocytes express mu, 

delta, and kappa opioid receptors in a developmentally regulated manner. 

Moreover, oligodendrocytes also express their own endogenous opioids as levels 

of neuropeptide zymogens (proenkephalin and prodynorphin) were measured in 

those in vitro studies (Knapp et al., 2001).  

 Interestingly, activation of mu opioid receptor in oligodendrocyte 

progenitors resulted in increased proliferation. When the kappa opioid receptor 

was blocked, oligodendrocyte progenitors showed increased morphological 

differentiation whereas mature oligodendrocytes showed increased cell death.  

Additional work has connected the kappa opioid receptor to pathology in 

the jimpy mouse, in which mutation in the myelin PLP gene causes 

oligodendrocyte death and severe CNS hypomyelination. These PLP deficient 

mice were shown to have a concomitant loss of the kappa opioid receptor in 
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oligodendrocytes. This 90% reduction is specific to the kappa opioid receptor and 

does not affect any other opioid receptors, suggesting that the kappa opioid 

receptor may be part of essential survival pathways. Taken together, these 

results suggest that endogenous opioids may serve as autocrine/ paracrine 

survival signals in oligodendrocyte development (Knapp et al., 2009). Control of 

opioid receptor levels as well as endogenous opioid expression may be essential 

to proper development and myelination. 

 In support of a crucial role of the opioid system in controlling myelin 

formation, recent in vivo studies from our laboratory have shown that perinatal 

exposure to buprenorphine affects myelination in the developing rat brain 

(Sanchez et al., 2008).  

 As described before, the mu partial agonist and kappa antagonist 

buprenorphine is currently used in clinical trials for pregnant opioid addicts. This 

drug appears to effectively prevent “street opioid” abuse by pregnant addicts as 

well as to decrease the incidence of neonatal abstinence syndrome.  However, 

the effects of buprenorphine on child brain development remain unknown.  

 In our previous experiments, pregnant rats were implanted with 

minipumps to deliver buprenorphine at 0.3 or 1 mg/kg/day. While the lower dose 

is within the therapeutic levels of buprenorphine given to humans during 

gestation, 1 mg/kg/day correspond to a supra-therapeutic or abuse dose of the 

drug.  Buprenorphine is known to cross into breast milk and thus, drug exposure 

via maternal milk was continued until the time of sacrifice or until weaning at 21 
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days postnatal. Analysis of the pup brains indicated that exposure to low, 

therapeutic doses of buprenorphine resulted in accelerated and increased 

expression of all MBP isoforms from postnatal day 12 to 26, corresponding to the 

normal period of rapid myelination in the developing brain. Conversely, perinatal 

exposure to the higher dose of buprenorphine resulted in delayed expression of 

all MBP isoforms, although levels recovered to normal values by postnatal day 

26. Exposure to this elevated dose also resulted in a 25% decrease in the 

number of myelinated axons of the corpus callosum, a heavy myelinated 

structure that connects both cerebral hemispheres. These data are suggestive of 

a dose-specific mechanism controlling oligodendrocyte maturation and 

myelination in the developing brain.  

Interestingly, analysis of the corpus callosum also indicated that, 

regardless of the dose, myelinated axons in pups exposed to buprenorphine 

exhibited increased axonal caliber accompanied by disproportionately thinner 

myelin sheath. Since the caliber of unmyelinated axons was not affected, this 

alteration of the normal myelin thickness/axonal diameter ratio suggests that 

disruption of endogenous opioid signaling by buprenorphine exposure alters 

oligodendroglial-neuronal interactions which are crucial to the coordination of 

myelin formation with radial axonal growth (Sanchez et al., 2008).  

It is apparent that neuron-glia interaction is critical to proper myelination, 

but these data beg the question: where and how are opioids acting to control 

myelination in the developing brain?  
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The presence of opioid receptors on neurons and glial cells confounds any 

conclusions drawn from these data, so further studies are required to clarify any 

direct effects of buprenorphine on developing oligodendrocytes.  To address this 

problem, experiments in this thesis investigated the potential direct effects of 

buprenorphine on cultured oligodendrocytes. The results indicated that 

buprenorphine indeed exerts direct dose-dependent effects that are highly 

specific for different stages of oligodendrocyte development.  Moreover, similar 

effects were also observed for methadone, further stressing the need for detailed 

studies on the effects of opioid addiction treatments on brain development. 
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MATERIALS AND METHODS 

Materials: Percoll, bovine pancreas DNAse and papain for cell isolation as well 

as all cell culture medium components were purchased from Sigma-Aldrich (St. 

Louis, MO). Dulbecco’s modified Eagle’s medium/ Ham’s F-12 (DMEM/F-12) 

(1:1) medium was obtained from Invitrogen (Grand Island, NY). Reduced growth 

factor Matrigel was from Becton Dickinson (Franklin Lakes, NJ). Buprenorphine, 

methadone, and the mu opioid receptor antagonist CTOP were purchased from 

Sigma-Aldrich (St. Louis, MO). All gel electrophoresis reagents and supplies 

were purchased from Bio-Rad Laboratories (Hercules, CA). The mouse anti-β-

actin and rat anti-MBP (82-87 region) monoclonal antibodies were from Sigma-

Aldrich and Millipore Corporation (Temecula, CA), respectively. The mouse O4 

monoclonal antibody was kindly provided by Dr. Rashmi Bansal (University of 

Connecticut, Farmington, CT). Super Signal West Dura reagent was obtained 

from Pierce (Rockford, IL). Methyl-[3H] thymidine (specific activity 75Ci/mmol) 

was from Amersham (Piscataway, NJ).All appropriate secondary antibodies were 

purchased from Santa Cruz Biotechnology (Santa Cruz, CA).  

 

Isolation and culture of oligodendrocytes: Timed-pregnant Sprague-

Dawley rats were provided by Harlan Laboratories (Frederick, MD). 

Oligodendrocytes at different stages of development were directly isolated from 

3- to 9-day-old rat brains as described previously (Colello and Sato-Bigbee, 

2001) with minor modifications. For this, the brains were rapidly dissected out, 



www.manaraa.com

	
  

 33	
  

transferred to ice, and the meninges and main blood vessels removed by rolling 

the tissue on sterile filter paper. After mincing into 1-2 mm pieces, the tissue was 

incubated for 25 min. at 37oC in the presence of 1 unit/ml papain and 0.01 mg/ml 

DNAse. Following incubation, the tissue was extensively washed and a total cell 

suspension prepared by forced filtration through a 75 µm pore size nylon mesh. 

The resulting suspension was centrifuged for 15 min at 30,000 x g in an isotonic 

self-generated Percoll gradient.  The band enriched in oligodendrocytes was then 

subjected to differential adhesion on tissue culture-treated Petri dishes to 

eliminate microglial cells and residual astrocytes. The floating oligodendrocytes 

were then plated in 48-well plates (Falcon) (for western blot analysis) or on 

10mm cover slips in 24-well plates (for immunocytochemistry) previously coated 

with 12.5 µL/well reduced growth factor-Matrigel extracellular matrix. Prior to use, 

the cells were maintained overnight in chemically defined medium (CDM) 

(DMEM) /F-12) supplemented with 1 mg/mL fatty acid-free bovine serum 

albumin, 50 µg/mL transferrin, 5 µg/mL insulin, 30 nM sodium selenite, 0.11 

mg/mL sodium pyruvate, 10 nM biotin, 20 nM progesterone, 100 µM putrescine, 

15 nM triiodothyronine. Astroglial contamination of these cultures, as assessed 

by glial fibrillary acid protein staining, was less than 5%. Animal use and isolation 

of oligodendrocytes were conducted in accordance with the guidelines from the 

National Institutes of Health and approved by the Virginia Commonwealth 

University Animal Care and Use Committee. 
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Western blot analysis: Pre-oligodendrocyte cultures containing equivalent 

numbers of cells per well were lysed in 80 µL of 60 mM Tris-HCl buffer (pH 6.8) 

containing 10% glycerol, 2% sodium dodecyl sulfate (SDS), and 5% 2-

mercaptoethanol. 10 µL samples were subjected to SDS-polyacrylamide gel 

electrophoresis in 15% acrylamide and the proteins were electrotransferred to 

nitrocellulose. The membranes were then subjected to immunoblot analysis as 

previously reported (Saini et al., 2005), with minor modifications. Nonspecific 

antibody binding to the blots was blocked by incubation in 10 mM Na2HPO4, 2.7 

mM KCl and 137 mM NaCl, pH 7.4, (PBS) containing 3% nonfat dry milk and 

0.05% Tween-20 (blocking solution), for 1 hour at room temperature. Blots were 

then incubated overnight with anti-Myelin Basic Protein (dil. 1:100), an antibody 

that reacts with all 4 major MBP isoforms. β-Actin levels detected with anti-β-

actin antibody (dil. 1:2,000) were used as loading controls. After extensive rinsing 

with PBS, blots were incubated for 30 min in blocking solution, followed by 

incubation with the appropriate horseradish peroxidase (HRP)-conjugated 

secondary antibody for 2 hours. All antibodies were diluted in blocking buffer. 

After two 5-min rinses in PBS containing 0.05% Tween-20 and four 10-min rinses 

in PBS, the immunoreactive bands were detected by chemiluminescence with 

Super Signal West Dura reagent. The relative amount of immunoreactive protein 

in each band was determined by scanning densitometric analysis of the X-ray 

films using the NIH Image J program. After quantification of the bands, values 

were divided by β-actin levels to correct for loading differences. 
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[3H]Thymidine incorporation: After isolation, oligodendrocyte progenitors 

isolated from 3-day-old rat brain were plated on 48- well plates previously coated 

with 12.5 µL/well reduced growth factor Matrigel and maintained overnight in 

CDM. The next day, the medium was replaced with CDM containing 3 µCi/mL 

[3H]thymidine, in the presence or absence of different concentrations of 

buprenorphine or methadone. After 24 hours, the cultures were washed three 

times with ice-cold PBS, followed by incubation with 20% trichloroacetic acid 

(TCA) for 30 minutes at 4ºC. After three 15 minute washes with 10% TCA, the 

cells were solubilized by incubation with 70% formic acid at 37°C for 1 hour. 

Aliquots were then used to determine the radioactivity by liquid scintillation 

counting. 

 

 

 Immunocytochemistry: Pre-oligodendrocytes were plated in 24-well plates 

(Fisher) on 10mm cover slips coated with 12.5 µL/well reduced growth factor 

Matrigel and maintained overnight in CDM. The next day, the medium was 

replaced with CDM alone or supplemented with buprenorphine. The medium was 

replaced every 48 hours. After 4 days of incubation, the cells were fixed in 4% 

paraformaldehyde and immunocytochemistry was carried out as previously 

reported (Sato-Bigbee et al., 1999). Non-specific antibody binding was blocked 

by incubation of the cells for 1 hour in PBS containing 5% non-fat dry milk, 0.05% 

Tween-20, and 0.5% normal goat serum (blocking solution). The cells were then 
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incubated overnight with the O4 antibody (dil.1:3) and MBP antibody (dil. 1:10) in 

blocking solution. After several washes in PBS, the cells were incubated for 30 

min in blocking solution and for 2 hours with Alexa 488-conjugated anti- mouse 

IgM (dil. 1:250) or Texas Red-conjugated anti-rat IgM (dil. 1:150). The cultures 

were analyzed using a Nikon Eclipse 800M fluorescence microscope. 

 

Statistical Analysis: Statistical analysis was performed by one-way analysis 

of variance using the GraphPad Prism program. Differences between results 

were considered statistically significant when p values were <0.05. 
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RESULTS 

As described before, our previous studies indicated that perinatal 

exposure to buprenorphine causes dose-specific and developmentally dependent 

effects on brain myelination. Elevated levels of MBP expression were observed 

at all studied ages in the brains of pups exposed to therapeutic drug doses. In 

contrast, treatment with a supra-therapeutic dose was accompanied by delayed 

MBP expression and reduced number of myelinated axons (Sanchez et al., 

2008).  

Because MBPs are considered to be markers of mature oligodendrocytes, 

these findings suggested that while therapeutic levels of buprenorphine 

accelerate and promote cell differentiation, higher buprenorphine doses may 

delay oligodendrocyte maturation. It is also important to consider that opioid 

receptors are known to be ubiquitously expressed and thus, the observed 

phenotypes may not necessarily reflect a direct action of buprenorphine on the 

oligodendrocytes but could be mediated through a number of other cell types, 

including neurons and different glial populations. Therefore, these hypotheses 

raise two major questions: 

1. Does buprenorphine have any effects on oligodendrocyte 

development? 

2. Could those potential effects be attributed to direct or indirect 

actions of the drug? 
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To address these two questions, we decided to investigate the potential 

direct effects of buprenorphine on cultured oligodendrocytes. Selection of the cell 

culture system for these experiments required special considerations. 

First of all, opioid receptors are expressed throughout oligodendrocyte 

development, but previous studies have shown that their relative abundance 

changes over time (Knapp et al., 2001). In addition, oligodendrocyte progenitors, 

which are still mitotic, may respond quite differently to opioids than more mature 

pre-oligodendrocytes, the predecessors of the postmitotic and terminally 

differentiated cells capable of myelination. Therefore, it was critical that both 

progenitors and pre-oligodendrocytes be studied. Secondly, most studies on 

oligodendrocyte maturation use progenitors isolated from rodent newborn brain 

which are then cultured for several days to obtain cells at different stages of 

development. However, there is evidence to indicate that some responses may 

be lost when cells of the oligodendroglial lineage are maintained for extensive 

periods of time in purified cultures. As an example, neonatal oligodendrocytes 

become unresponsive to neurotransmitters when cultured for several days in the 

absence of neurons, losing their capacity to maintain neurotransmitter-activated 

signaling pathways coupled to Ca2+mobilization (He et al., 1996).  This becomes 

particularly important when trying to understand the molecular mechanisms that 

drive the last stages of differentiation leading to the generation of mature 

myelinating oligodendrocytes. 

For these reasons, the cultures used in these studies were prepared using 

cells directly isolated from rat brain at different postnatal ages. It is expected that 
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these cells are—at the time of plating—more representative of their in vivo 

responses than those which are induced to differentiate for extensive periods of 

time in culture. 

  Cells isolated from 3-day-old rat brain are immature oligodendrocyte 

progenitors that are either bipolar or possess several simple processes and can 

be labeled with the A2B5 antibody. On the other hand, cells obtained from 9-day-

old animals are pre-oligodendrocytes that may already be multipolar and react 

with the O4 antibody (Sato-Bigbee et al., 1999). These later cells represent a 

crucial developmental stage that immediately precedes the generation of mature 

oligodendrocytes capable of myelination. 



www.manaraa.com

	
  

 40	
  

TREATMENT OF OLIGODENDROCYTE PROGENITORS WITH 

BUPRENORPHINE INDUCES A DOSE-SPECIFIC STIMULATION ON CELL 

PROLIFERATION  

We found that direct exposure to buprenorphine alters the proliferative 

capacity of the oligodendrocyte progenitors. In these experiments, DNA 

synthesis was assessed by incubating the cell cultures for 24 hours in chemically 

defined medium (CDM) containing 3H-thymidine in the presence or absence of 

different concentrations of buprenorphine. As shown in Figure 5, exposure to 

buprenorphine resulted in a dose-dependent stimulation of cell proliferation, with 

maximal values of 3H-thymidine incorporation observed between 0.5µM and 

1.0µM buprenorphine. Interestingly, treatment with a higher concentration of the 

drug (3.0µM) did not yield a significant increase in oligodendrocyte proliferation 

(Figure 5). These effects seem to be mediated by the mu opioid receptor 

because a similar dose-specific stimulation of cell proliferation was observed 

when the cultures were treated with methadone, a mu-selective agonist (Figure 

6). 
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Figure 5. Exposure of oligodendrocyte progenitors to buprenorphine 

results in a dose-specific increase in cell proliferation. Oligodendrocyte 

progenitors were isolated from 3-day old rat brain as described under “Materials 

and Methods”. The cells were incubated for 24 hours in the presence or absence 

of different doses of buprenorphine. Proliferation was evaluated by 3H-thymidine 

incorporation. The results are expressed as percentage of the control values +/- 

SEM. *p<0.05. 
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Figure 6. Exposure of oligodendrocyte progenitors to methadone also 

results in a dose-specific increase in cell proliferation. Oligodendrocyte 

progenitors were isolated from 3-day old rat brain as described under “Materials 

and Methods”. The cells were incubated for 24 hours in the presence or absence 

of different doses of methadone. Proliferation was evaluated by 3H-thymidine 

incorporation. The results are expressed as percentage of the control values +/- 

SEM. *p<0.005. 
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BUPRENORPHINE ALTERS PRE-OLIGODENDROCYTE DIFFERENTIATION 

AND MORPHOLOGY 

In contrast with the observed effect on progenitor proliferation, 

buprenorphine affects the differentiation of pre-oligodendrocytes. Two 

approaches were used to assess differentiation: measuring MBP expression and 

morphological studies.  

As seen in Figure 7, oligodendrocytes isolated from 9-day old rat brain 

showed a dose-specific response in MBP production when treated with 

buprenorphine for 4 days. A maximum stimulation was observed between 

0.25µM and 0.5µM buprenorphine. Importantly, while these doses stimulated all 

four MBP isoforms, the 14 kDa isoform—predominant in mature myelin— 

showed the most significant increase. Interestingly, the maturity of the animals 

from which the cells were isolated was critical in achieving this stimulatory 

response. The increased MBP expression induced by low buprenorphine levels 

in cells from 9-day-old pups is not observed if the oligodendrocytes are instead 

isolated from 6-day-old animals (Figure 8), an observation that suggests that 

opioid signaling works in concerted action with other developmentally 

regulated mechanisms that control the last steps of oligodendrocyte 

maturation.  Moreover, in cells from the younger animals, high buprenorphine 

doses reduced MBP levels to values below those corresponding to the controls, 

a finding which as discussed later, may implicate the participation of different 

opioid receptor types.  
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Moreover, in support of an effect of buprenorphine on cell differentiation, 

we also observe a dose-specific effect on the morphology of the cells (Figure 9). 

When treated with 0.5µM buprenorphine, which, as indicated above, induces 

maximum MBP stimulation, cells show significant increases in process outgrowth 

and membrane extension. Interestingly, this effect was abolished when cells 

were treated with higher buprenorphine doses (3.0µM), which also coincides with 

lower levels of MBP in western blotting analysis. Taken together, these 

observations indicate that buprenorphine exerts a direct effect on 

oligodendrocyte maturation. 
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Figure 7. Direct treatment of pre-oligodendrocytes with buprenorphine 

alters MBP expression in a dose-specific manner. Oligodendrocytes from 9-

day-old rat brain were incubated for 4 days in CDM with or without 0.25, 0.5, 1.0, 

3.0  µM buprenorphine. MBP levels were determined by western blotting using 

beta-actin levels as loading controls. For correct quantification of individual MBP 

isoforms, film exposure times were adjusted to maintain linear detection of the 

bands. Figures correspond to representative experiments. Results in the bar 

graph are expressed as percentage of controls (0µM buprenorphine) +/- SEM. 

*p<0.02. 
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Figure 8. Direct treatment of oligodendrocytes from 6-day-old rat brain 

does not produce an increase in MBP levels. Oligodendrocytes were 

incubated for 4 days in CDM with or without 0.25, 0.5, 1.0, 3.0 µM 

buprenorphine. MBP levels were determined by western blotting using beta-actin 

levels as loading controls. For correct quantification of individual MBP isoforms, 

film exposure times were adjusted to maintain linear detection of the bands. 

Figures correspond to representative experiments. Results in the bar graph are 

expressed as percentage of controls (0µM buprenorphine) +/- SEM. *p<0.05.
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Figure 9. Buprenorphine treatment alters process network extension and 

membrane outgrowth in pre-oligodendrocytes in a dose-dependent 

manner. Oligodendrocytes isolated from 9-day old rat brain were cultured for 4 

days in CDM with or without buprenorphine (0.5µM, 3.0µM). After fixation, cells 

were stained with anti-MBP antibody and visualized by fluorescent microscopy. 

The figure shows three representative panels corresponding to each of the 

treatment conditions. Note extensive process and membrane extension in cells 

treated with 0.5µM buprenorphine. 
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BUPRENORPHINE STIMULATORY EFFECTS ON CELL DIFFERENTIATION 

ARE MEDIATED BY THE MU OPIOID RECEPTOR 

As indicated above, buprenorphine directly affects oligodendrocyte 

maturation. Because buprenorphine is both a mu partial agonist and a kappa 

antagonist, further investigation was focused on the specific receptor mediating 

these effects.  

To address the role of the mu opioid receptor in this response we used 

two approaches. First, we investigated whether or not observed buprenorphine 

effects could be mimicked by methadone, a mu opioid receptor agonist. As seen 

in Figure 10, this is indeed the case, as methadone also induces dose-specific 

effects similar to those observed with buprenorphine treatment. Moreover, both 

methadone and buprenorphine effects are abolished by co-incubation with the 

highly specific mu opioid receptor antagonist CTOP (Figure 11) further 

supporting the role of this receptor in regulating oligodendrocyte maturation.  
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Figure 10.  Direct treatment of pre-oligodendrocytes with methadone alters 

MBP expression in a dose-specific manner. Oligodendrocytes were incubated 

for 4 days in CDM with or without 0.25, 0.5, 1.0, 3.0, 5.0  µM methadone. MBP 

levels were determined by western blotting using beta-actin levels as loading 

controls. For correct quantification of individual MBP isoforms, film exposure 

times were adjusted to maintain linear detection of the bands. Figures 

correspond to representative experiments. Results in the bar graph are 

expressed as percentage of controls (0µM buprenorphine) +/- SEM.  *p<0.05. 
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Figure 11. The mu opioid receptor antagonist CTOP blocks stimulation of 

MBP by buprenorphine and methadone. Oligodendrocytes isolated from 9-day 

old rat brain were cultured for 4 days in CDM in presence or absence of 

methadone (1µM) or buprenorphine (0.5µM) with and without CTOP. MBP levels 

were determined by western blotting using beta-actin levels as loading controls. 

For correct quantification of individual MBP isoforms, film exposure times were 

adjusted to maintain linear detection of the bands. Figures correspond to 

representative experiments. Results in the bar graph are expressed as 

percentage of controls (0µM buprenorphine). 
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DISCUSSION 

Substitution therapies for opioid addiction, like those using methadone and 

buprenorphine, are valuable instruments in relieving the withdrawal associated 

with discontinuation of opioid abuse. At therapeutic doses, these synthetic 

opioids comprise the most effective tools available for substitution therapy. 

However, current understanding of their clinical efficacy is limited to the realm of 

adult opioid addicts.  

 Current clinical trials use buprenorphine to treat pregnant opioid addicts. 

Nevertheless, population studies have shown that children exposed to opioids in 

utero exhibit behavioral and cognitive deficits, suggesting that exposure to 

exogenous opioids may disrupt functions of the endogenous opioid system that 

could play a crucial role in the coordination of brain development.   

As previously described, recent results from our laboratory showed that 

perinatal exposure to buprenorphine affects myelination in the developing rat 

brain (Sanchez et al., 2008).  While exposure to therapeutic levels of 

buprenorphine resulted in accelerated and significantly increased brain levels of 

MBPs, supra-therapeutic levels retarded the appearance of these proteins and 

caused a decrease in the number of axons that were myelinated. Because MBPs 

are considered to be markers of mature oligodendrocytes, these findings 

suggested that while therapeutic levels of buprenorphine accelerate and promote 

cell differentiation, higher buprenorphine doses might delay oligodendrocyte 

maturation. However, opioid receptors are known to be ubiquitously expressed in 
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neuronal and glial populations of the CNS, making it difficult to parse out direct 

effects on any specific cell population. Thus, the reported effects of 

buprenorphine on myelination may not necessarily indicate a direct drug action 

on the oligodendrocytes. It is conceivable that buprenorphine effects on 

myelination may indirectly result from opioid actions on neurons and different 

glial populations which might then influence myelination. For this reason, it was 

important to investigate the possibility of direct effects of buprenorphine on the 

developing oligodendrocytes.  

We have now found that (1) buprenorphine indeed exerts direct actions on 

the oligodendrocytes, (2) these effects are dose-specific, and (3) the direct 

actions of the drug are highly dependent on the stage of cell differentiation.  

The present results showed that low buprenorphine doses induce 

increased proliferation of oligodendrocyte progenitors. In contrast, similar 

treatment of pre-oligodendrocytes show augmented capacity of the cells to 

synthesize MBPs and a remarkable increase in morphological complexity, both 

indicators of a stimulatory effect on oligodendrocyte maturation.  These 

buprenorphine-dependent effects on cell proliferation and differentiation are 

primarily mediated by the mu opioid receptor.  

Particularly interesting is the observation that oligodendrocyte progenitors, 

as well as pre-oligodendrocytes, exhibit a clear biphasic response to 

buprenorphine.  Our data show an increase in oligodendrocyte progenitor 

proliferation following exposure to 0.5µM- 1.0µM buprenorphine. However, when 
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progenitors are treated with 3.0µM buprenorphine, rates of DNA synthesis do not 

significantly deviate from those of untreated cells. Likewise, pre-oligodendrocytes 

exhibit increased differentiation when exposed to low concentrations of 

buprenorphine but not in response to elevated doses of the drug. Morphine 

exposure was recently shown to increase apoptotic cell death of cultured 

oligodendrocytes (Hauser et al., 2009). Thus, it is possible to hypothesize that 

our present results may be due to an effect of buprenorphine on survival. 

However, preliminary experiments in which apoptosis was detected by TUNEL 

assay revealed no marked effects that could explain observed differences 

between controls and buprenorphine-treated oligodendrocytes.    

Understanding of the molecular mechanisms underlying these effects is 

complicated by the complex pharmacology of buprenorphine. This drug is 

generally regarded as a partial mu opioid receptor agonist (Yu et al., 1997) and 

kappa opioid receptor antagonist (Leander, 1987). Additionally, buprenorphine is 

also known to bind to and activate the ORL-1 receptor (Bloms-Funke et al., 2000, 

Huang et al., 2001, Lutfy et al., 2003) and to exhibit both agonist and antagonist 

actions on delta opioid receptors (Sadee et al., 1982, Huang et al., 2001).  

Previous studies have shown that the mu opioid receptor is expressed very early 

in the oligodendroglial lineage, whereas the delta and kappa opioid receptors 

appear at later stages of development (Knapp et al., 1998). However, more 

recent analysis indicated the presence of the three opioid receptors at all stages 

along the oligodendroglial lineage (Hauser et al., 2009). Thus, it is difficult to 

ascribe responses to a particular opioid receptor signaling pathway. However, 
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our present results support the idea that the observed stimulatory actions of 

buprenorphine on the oligodendrocytes are mediated by agonist effect on the mu 

opioid receptor.  This conclusion stems from the finding that these buprenorphine 

actions could be mimicked by replacing this drug with the mu agonist methadone. 

Furthermore, we also found that buprenorphine stimulatory effects were blocked 

when oligodendrocytes were co-incubated with CTOP, a selective and potent mu 

antagonist (Gulya et al., 1988, Hawkins et al., 1989, Law and Loh, 1999).  

Previous studies showed that exposure of immature oligodendrocytes to the mu 

opioid receptor agonist PL017 resulted in elevated DNA synthesis (Knapp and 

Hauser, 1996), an observation that further supports the involvement of the mu 

opioid receptor as a mediator of the observed effects of buprenorphine on 

oligodendrocyte progenitor proliferation.  Further supporting a role for opioids in 

regulating cell proliferation in the brain, treatment of adult neuroprogenitors with 

opioid antagonists results in a marked decrease in ERK 1/2 phosphorylation and 

levels of proteins involved in cell cycling (Persson et al., 2003). Although these 

adult progenitors may differ from their neonatal counterparts, we suspect that 

ERK remains a critical element in this effect of opioid signaling as this enzyme is 

known to play an important role in the induction of oligodendrocyte progenitor 

proliferation in response to growth factor stimulation (Cui and Almazan, 2007). 

Importantly, the supposition of an in vivo role of the endogenous opioid 

system in controlling cell proliferation during CNS development is strengthened 

by the observation that synthesis of proopiomelanocortin and its processing into 

the mu and delta opioid receptor agonist beta-endorphin in the rat brain, are 
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elevated at embryonic days and postnatal ages that coincide with periods of 

crucial proliferative activity neuronal and glial progenitors (Angelogianni et al., 

2000).  Moreover, several lines of evidence support the idea that opioid signaling 

may not only be important during development but also play a role in maintaining 

adequate numbers of different cell populations in the adult brain. Treatment of 

cultured adult hippocampal progenitors with mu and delta opioid receptor 

antagonists decreases proliferation and neurogenesis (Persson et al., 2003). 

Additional work also shows that incubation with β-endorphin preferentially 

stimulates oligodendrogenesis in a population of cultured rat adult hippocampal 

progenitors (Raynor et al., 1994, Persson et al., 2006). 

 However, to our knowledge, the present study is the first to directly 

implicate the mu opioid receptor in the last stages of oligodendrocyte 

development. Direct exposure of pre-oligodendrocytes to buprenorphine not only 

stimulated MBP expression, a marker of cell maturation, but also resulted in a 

dramatic increase in process complexity and membrane outgrowth, raising the 

possibility that signaling through the mu opioid receptor plays a crucial role in 

controlling myelin formation. Moreover, this stimulation occurs in cells isolated 

from 9-day-old animals but not at earlier immediate time points of brain 

development. This later observation strongly suggests that this mu opioid 

receptor function is tightly coordinated with other developmentally controlled 

mechanisms that determine the last stage of oligodendrocyte maturation.    

Thus, this work has shown that buprenorphine has direct effects on 

oligodendrocytes, and while these cells respond uniquely according to their stage 
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of development, we also found that dosage is critically responsible for the 

biphasic response that is curiously observed in both progenitors and pre-

oligodendrocytes. Why do higher doses of buprenorphine fail to cause the 

increase in progenitor proliferation or stimulation of pre-oligodendrocyte 

differentiation that is observed when cells are treated with lower doses of this 

drug? 

One potential explanation could be receptor desensitization. However, 

several lines of evidence suggest that a biphasic response could be due to 

simultaneous activation by buprenorphine of the ORL-1 receptor. Similar to the 

bell-shape curve observed in our experiments, others have shown that while 

lower doses of buprenorphine exert an analgesic effect, this antinociceptive 

action is significantly decreased by higher levels of the drug (Dum and Herz, 

1981, Lizasoain et al., 1991). Later investigations also showed that while 

antinociception induced by buprenorphine is mediated by the mu opioid receptor, 

this effect is counteracted by the concomitant activation of ORL-1 receptors 

(Lutfy et al., 2003). In those studies, the co-administration of J-113397, an ORL-1 

receptor antagonist, not only enhanced the antinociceptive effect of 

buprenorphine but also eliminated the characteristic bell-shape response. 

Moreover, the biphasic response was not observed in ORL-1 knockout mice. We 

have found that developing oligodendrocytes express ORL-1 (unpublished 

observations), although the potential role of this receptor in these cells has never 

been investigated before.   However, it is tempting to hypothesize that while low 

doses of buprenorphine are able to activate the high affinity mu opioid receptor, 
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stimulating cell proliferation and differentiation, higher doses of the drug may 

counteract these effects by activation of ORL-1. It remains to be determined 

whether this type of dose-specific receptor activation may be responsible for the 

biphasic response of the oligodendrocyte cultures investigated in this thesis as 

well as our dose-dependent observations regarding MBP expression and 

myelination in our previous in vivo studies (Sanchez et al., 2008).    

It is important to consider that the in vivo effects of buprenorphine on 

myelination may not be entirely explained by the direct effects of buprenorphine 

that we have now found on oligodendrocytes in vitro.  There are several factors 

that confound any causative associations. First, as discussed above, dosage has 

been a critical element in each of the observed result. In vivo doses are 

measured in mg/kg/day without exact knowledge of the actual buprenorphine 

concentration in the CNS extracellular space, whereas cultures are maintained at 

a specific buprenorphine dose. In cultured oligodendrocytes, responses to 

buprenorphine vary based on the developmental state of the cells-- low doses of 

buprenorphine stimulate proliferation in progenitors, and differentiation in pre-

oligodendrocytes. However, perinatal exposure to buprenorphine affects 

oligodendrocytes throughout their maturation. Responses to opioids vary 

temporally and because progenitor populations are maintained even in adult 

animals, effects of a specific dose on oligodendrocytes at a particular stage of 

development in vitro may not be completely predictive of in vivo effects.  

In addition, in vivo phenotypes represent a concert of responses from 

neurons and glia. The ubiquity of opioid receptors in the CNS and the necessity 
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for axon-glial signaling in developmental coordination implicate all neurons and 

glia in the observed response. Since opioids influence neural progenitor 

differentiation and physiology of mature neurons and glia, their effects should be 

considered potent and diverse throughout the developing brain. Thus, while this 

work has focused on oligodendrocyte responses to opioids in vitro, our previous 

in vivo observations may also involve buprenorphine effects on neuron-glia 

interactions. Such interactions are critical to the proper timing of myelination—

although difficult to prove, it is generally assumed that neurons signal to 

oligodendrocytes when to begin the process. In turn, oligodendrocytes control 

placement of protein complexes in the axonal membrane so that they will appose 

the nodes of Ranvier. Oligodendrocytes also control the axonal cytoskeleton and 

rates of vesicular transport (Simons and Trajkovic, 2006). When surface ligands 

and receptors bind, an array of signaling cascades are activated. Interestingly, 

some pathways have been shown to proceed through MAPK signaling which has 

previously been shown to mediate opioid effects in oligodendrocytes, suggesting 

a convergence of signaling in these developmental controls (Colognato et al., 

2002, Persson et al., 2003, Colognato et al., 2004). 

In support for an additional effect on neuron-glia interactions, we showed 

before that regardless of the dose, pups perinatally exposed to buprenorphine 

exhibited a significant increase in the caliber of the myelinated axons (Sanchez 

et al., 2008). Future studies should also focus on understanding whether 

inhibition of the kappa opioid receptor may also play role in the potential effects 

of buprenorphine on myelination. Surprisingly, these axons were characterized 
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by having a disproportionately thinner myelin sheath. These changes were also 

accompanied by increased levels of myelin associated glycoprotein (MAG), a 

molecule that has been implicated in glial-axonal communication (Yin et al., 

1998).  Exposure to therapeutic low buprenorphine doses also exhibited 

increased MAG glycosylation and interaction with the Src-family tyrosine kinase 

Fyn. Interestingly, others have implicated both MAG and Fyn as clue molecules 

potentially mediating bidirectional signals between neurons and oligodendrocytes 

(Biffiger et al., 2000).  Based on these observations we hypothesized that opioid 

signaling may indeed be part of the molecular mechanisms that coordinate 

axonal radial growth with myelination (Sanchez et al., 2008).  

Altogether, our previous and present findings suggest that interference 

with the endogenous opioid system during development may have significant 

consequences on oligodendrocyte maturation and myelination. 

Although perinatal opioid exposure is the most immediate clinical correlate 

to this study, there are indeed other areas of clinical relevance. Many psychiatric 

disorders appear during adolescence and clinical studies of these patient 

populations show that changes in white matter volume coincide with onset of 

psychopathology. Under normal conditions, the rate of myelination increases 

during adolescence (Pfefferbaum et al., 1994).  This is also a critical window for 

circuit refining and changes in the brain’s reward system. The magnitude of these 

structural and functional changes is evident both physically and behaviorally 

(Paus et al., 2008). The onset of psychotic disorders during adolescence 

underscores the plasticity and vulnerability of the brain during this period. 
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Evidence suggests that many of these disorders are associated with abnormal 

development of myelin. For example, adolescents who engage in dangerous 

behavior have increased white matter maturity in the frontal cortex (Berns et al., 

2009). Studies of white matter in psychotic patients show that pathology of 

myelin may contribute to the neurobiology of psychosis (Walterfang et al., 2005). 

Since we have shown the role of opioids in oligodendrocyte development and 

myelination, their role must be considered in these pathologies—both as a cause 

and as a possible therapy.  

In conclusion, the results obtained in this thesis project indicate that 

buprenorphine and methadone exert direct and developmentally specific effects 

on the oligodendrocytes. Together with our previous observations, the present 

findings further support an important role for opioid signaling in regulating brain 

maturation and, in particular, the generation of oligodendroglial pools, 

oligodendrocyte maturation, and myelination. These observations stress the 

need for further studies and the strict control for the use of these drugs in the 

treatment of pregnant opioid addicts. Future studies investigating the molecular 

mechanisms by which buprenorphine and methadone affect myelination and 

neuro-glial interactions should provide deeper understanding into these 

developmental processes and new strategies for the managing of pregnant 

addicts.  
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